
Whitepaper
Audio Improvements in
Android OS

ecom Digital Products and Services

www.ecom-ex.com
© ecom instruments GmbH | 2019
Author: Rajan Lal | Marco Kuhn

W
H

IT
E

P
A

P
E

R
A

u
d

io
 I

m
p

ro
ve

m
e

n
ts

 i
n

 A
n

d
ro

id
 O

S

 3

Content

What is Audio Latency? 4

Why Low Latency is important? 4

Audio API : Native layer vs JAVA layer 4

Improvement with AAUDIO 4

Audio subsystem changes 4

Application using AAUDIO 4

Comparison of Audio Latency on ECOM Saiph device 5

Using OpenSL ES Android Library 5

Using AAudio Android Library 5

Latency Comparison chart 5

Ex-Handy 10 images using the test applications 5

Sample Applications 5

4

What is Audio Latency?

Latency refers to a short period of delay (usually measured in
milliseconds) between when an audio signal enters a system and
when it emerges. Potential contributors to latency in an audio
system include analog-to-digital conversion, buffering, digital signal
processing, transmission time, digital-to-analog conversion and the
speed of sound in the transmission medium.

Latency is an important system performance metric. While many
kinds of audio latency metrics exist, one useful and well-understood
metric is round-trip latency, defined as the time it takes for an audio
signal to enter the input of a mobile device, be processed by an app
running on the application processor, and exit the output.

Diagram below describes the same:

Why Low Latency is important?

Low audio latency is important for all VOIP applications. Mission
critical communication has strict performance requirements for the
push-to-talk (PTT) voice calls. The group’s calls should be of course
established as soon as possible, but the most important thing is
that floor control is ‚instant‘ and mouth-to-ear voice delay is minimal
during mission critical PTT calls.

In addition to MCPTT there are other mission critical applications
which would need the audio latency to be minimal.

Audio API : Native layer vs JAVA layer

Android SDK provides many classes and API’s for the 3rd party
developers on the Java layer for audio recording and audio play-
out. Audio API’s available in 3rd party android SDK provides huge
flexibilities to the applications. But this flexibility comes with the cost
of latency. The Java layer methods has to call native layer API’s which
adds on to the processing time.

These Java layer SDK API’s are good for general purpose applications
which does not have very high latency requirements. When it comes
to VOIP or MCC applications, such SDK API’s comes with a high cost
in terms of time.

Android has thus provided native API’s as part of 3rd party NDK
(Native Development Kit) which can be used for applications looking
for better performance and low latency. Android has also support for
OpenSL ES.

OpenSL ES (Open Sound Library for Embedded System) is open
source cross platform library for audio. This library is designed
especially for the better audio performance by the application on
embedded devices. OpenSL ES for Android is an Android-specific
implementation of the OpenSL ES API specification from the Khronos
Group.

Improvement with AAUDIO

AAudio is a new Android C API introduced in the Android O release. It
is designed for high-performance audio applications that require low
latency. Apps communicate with AAudio by reading and writing data
to streams using the native android API’s available in Android NDK
library. AAudio is a new native C API that provides an alternative to
Open SL ES. It uses a Builder design pattern to create audio streams.
AAudio provides a low-latency data path. It supports 2 audio data
flow modes:

�� EXLUSIVE mode
�� SHARED mode

 In EXCLUSIVE mode, the feature allows client application code to
write directly into a memory mapped buffer that is shared with the
ALSA driver. In SHARED mode, the MMAP buffer is used by a mixer
running in the AudioServer. In EXCLUSIVE mode, the latency is
significantly less because the data bypasses the mixer.

In EXCLUSIVE mode, the service requests the MMAP buffer from
the HAL and manages the resources. The MMAP buffer is running in
NOIRQ mode, so there are no shared read/write counters to manage
access to the buffer. Instead, the client maintains a timing model of
the hardware and predicts when the buffer will be read.

In the diagram below, we can see the Pulse-code modulation (PCM)
data flowing down through the MMAP FIFO into the ALSA driver.
Timestamps are periodically requested by the AAudio service and
then passed up to the client‘s timing model through an atomic
message queue.

In SHARED mode, a timing model is also used, but it lives in the
AAudioService. For audio capture, a similar model is used, but the
PCM data flows in the opposite direction.

Audio subsystem changes

AAudio requires an additional data path at the audio front end of
the audio subsystem so it can operate in parallel with the original
AudioFlinger path. That legacy path is used for all other system
sounds and application sounds. This functionality could be provided
by a software mixer in a DSP or a hardware mixer in the SOC.
Devices which supports low latency has the hardware feature defined:

android.hardware.audio.low_latency

Application using AAUDIO

3rd party application developers should consider using the open
source Oboe library. Oboe is a C++ wrapper that provides an API
that closely resembles AAudio. It calls AAudio when it is available,
and falls back to OpenSL ES if AAudio is not available. NDK API
developers guide provides complete guide on using aaudio API’s:

https://developer.android.com/ndk/guides/audio/aaudio/aaudio

 5

Comparison of Audio Latency on ECOM Saiph device

We used 2 sample applications each using native library (Open SL
and AAudio) to measure the audio latency on Saiph device. Player
data call back method is used to estimate the latency.
Device and audio parameters used

�� Model: Ex-Handy 10 ROW
�� Android OS Version: 8.1.0
�� Build number: H10ROW.EC.01.01.025.00
�� Sample Rate: 48000 Hz
�� Buffer Size: 240

Using OpenSL ES Android Library

Bar Graph on Audio sample played vs the time
(Calculated Latency ~80ms)

Using AAudio Android Library

Bar Graph on Audio sample played vs the time
(Calculated Latency ~28ms)

Latency Comparison chart

 Ex-Handy 10 images using the test applications

Ex-Handy 10 images using the test applications

AAUDIO test Application OpenSL test Application

Sample Applications

Here are link for some of the sample applications using AndroidTM

Oreo and the native audio API’s:

https://github.com/google/oboe/tree/master/samples/hello-oboe

https://github.com/googlesamples/android-ndk/tree/master/native-audio

https://github.com/googlesamples/android-audio-high-performance/
tree/master/aaudio

Pepperl+Fuchs Quality
Download our latest policy here:

www.pepperl-fuchs.com/quality

www.pepperl-fuchs.com
Subject to modifications · © Pepperl+Fuchs
Author: Rajan Lal | Marco Kuhn / 05|2019

